

Computer Networks & Software Inc.

Accelerating CNS

GLENN RESEARCH CENTER

Demonstration of the NASA Small Aircraft Transportation System (SATS) Airborne Internet (AI)

I-CNS Conference 2002

7405 Alban Station Court, Suite B201, Springfield, Virginia 22150-2318 (703) 644-2103

Agenda

Accelerating CNS

GLENN RESEARCH CENTER

- Project Overview/Results
- Testbed/demonstration platform description
- Demonstration

All information contained in this document is presented for research discussion purposes only and is not endorsed nor approved by any NASA components or individuals.

SATS AI Project Summary

- NASA GRC SATS CNS: Denise Ponchak
- NASA GRC Program Manager: Mike Zernic
- Project:
 - Develop the requirement, architecture, and system level design baselines,
 - and establish the evaluation testbed for the Airborne Internet.
- AI Objective:
 - Consolidate and integrate the exchange of CNS data.
 - Minimize the number of radios and antennas on an aircraft. Goal is to provide common access means for all wireless aircraft applications.

Who are we?

Accelerating CNS

NASA GRC Team

- Computer Networks & Software, Inc. (CNS) Prime
 - Mulkerin Associates Inc. (MAI)
 - AvCS Research Ltd.
 - Microflight, Inc.
 - Project Management Enterprises, Inc. (PMEI)
 - AvCom, Inc.
 - Comptel, Inc.
- Architecture Technologies Corporation

Accomplished the first project cycle to define the SATS AI

What is SATS?

Accelerating CNS

SATS Program Objectives

- Concept: Add mobility and economic growth to communities - by increasing smaller airport capacity
- Objectives:
 - Higher volume operations in non-instrumented, nontowered facilities
 - Lower landing minimums at minimally equipped landing facilities
 - Increase single pilot crew safety mission reliability
 - En route procedures and systems for integrated fleet operations

What is the Airborne Internet?

Accelerating CNS

Generic SATS AI Model

- An Integrated CNS approach to interoperability all services through a common communications methods.
- All the challenges that the ATN faced in the 1980's, but using the standards of today.

Airborne Internet Notional Diagram¹

Accelerating CNS

1. Source: SATS Airborne Internet Joint Meeting ATC/CNS, Architecture Technology Corporation Briefing, 3/1/02.

What did we do?

- Preliminary Concept of Operations
- AI Requirements Definition
- CNS Technology evaluation/tradeoff
- Study of NAS evolution and SATS synchronization issues
- Defined three candidate architectural approaches:
 - Ground Centric (M3 and UMTS Cellular)
 - Space Centric (Immarsat)
 - Air Centric (Mode SATS)
- Performed Architecture Assessment
- Set-up a Testbed for the Mode SATS Approach

What is Mode SATS

- Based upon Self-Organizing VHF Data Link using GFSK modulation (peer-to peer technique).
- Builds upon the core ICAO navigation-surveillance standards for VHF datalink.
- Allows aircraft-to-aircraft switching (ad hoc networks) for AI communications.
- Single channel data burst rate is 19.2 Kbps.
 - Significant data throughput improvements through wide-band or multichannel techniques.
- Frequency tuning range:
 - Today 108-137 MHz
 - Researching 330MHz or higher usage

CNS SATS Airborne Internet Environment

Tell me About the Testbed

Accelerating CNS

AI Testbed Objectives - Build A

- Provide a 'Hands-on' technical platform to assess the principles and design of the Airborne Internet concept.
- Provide an affordable platform using COTS products.
- Provide base for additional technology insertion.

Architectural Principles

Ref	Principle
1	Provides the means to fully support the functional services.
2	The AI will be separable into platform specific systems defined as the CMS and a system defined as the NMS. To this extent the architecture will modular.
3	The mechanisms and techniques employed with the AI will be self-organizing.
4	All communication (to the extent practical) will be performed through a primary means of communication.
5	The system will be constructed using open system standards.
6	The interface to the NAS (enroute, terminal controllers) will be through a gateway facility.
7	Provide for interfaces to the entities shown in the Entity relationship Model.
8	Provide for information and operational security.

Installed Technology	
VHF Data Link (air-centric Mode SATS)	V
TCP/IP	V
Peer-to-Peer (connectivity)	V
 Emulated SATS Applications ADS-B, ATN CPDLC, FIS-B graphical weather, Pilot/Aircraft information exchange, and email 	√
Scalable	V

Test Bed – Build A with Mode SATS

Accelerating CNS

Aircraft N384

Aircraft N372, 374 & 376

Ground Facility

Aircraft N382

SATS Nodal Protocol Architecture

Demonstration Scenarios

- ADS-B
- Air-Air Chat
- FIS-B Graphical Weather
- Browsers to Access the Internet
- Streaming Video
- **CPDLC**
- Email
- Remote Monitoring Equipment Status

Test Bed – Build A with Mode SATS

Accelerating CNS

Aircraft N384

Aircraft N372, 374 & 376

Ground Facility

Aircraft N382

Accelerating CNS

Reference for Handout

Evaluation Factors and Architecture Models

Accelerating CNS

Evaluation Factors

- Cost
 - On-board and off-board cost components
 - Infrastructure requirements
 - Overlay on existing or new infrastructure to support SATS AI
 - SATS dedicated infrastructure or shared (and paid for) by other users
 - Use of airport area as cost model
- Availability
 - Time horizon
- Performance
 - Adherence to AI architectural principles
 - Functional requirements
 - Bandwidth sizing
 - Reliability redundancy
 - Delay
- Scalability
- Risk Assessment

Candidate Architectures for Comparison

Technology	Space	Air	Ground
Inmarsat INM 3 & 4	√		
VDL Mode SATS		√	
UMTS for ATC			V
3 GPP			V
TCP/IP, Mobile IP, Multicast	√	√	√
TIS-B, LAAS	√	√	\checkmark
Peer-to-Peer	√	V	V
Self Organizing (Manet)		√	
CDMA			√
IPSec	√	√	V

AI Architectural Evaluation Results

Accelerating CNS

- Aircraft Centric Architecture
 - Meets SATS requirements
 - Low risk, low cost, near COTS option
 - ICAO standards based with multiple hardware vendors
- Space Centric Architecture
 - Available as a service now
 - Existing aircraft can be upgraded to this service
 - Transition higher bandwidth with Inmarsat-4 constellation
- Ground Centric Architecture
 - UMTS technology has no inherent show stoppers and meets SATS requirements
 - High risk dependence on commercial aviation for development, certification and deployment of technology

Aircraft - centric currently evaluated as best approach.

Information (Data) Transfer Scheme

Accelerating CNS

Test mode: Operational mode:

Development and testing by use of multiple-mode VHF 25 KHz hardware. One wide-band with priority based TDMA channelization or multiple narrow band channels dynamically assignable to meet requirement.

Note: Minimum equipage required is frequency agile avionics with 2 receivers + 1 transmitter

Airborne Internet Build A Summary

Accelerating CNS

- VDL Mode SATS point-to-point and broadcast communication capability:
 - Air-to-air, self organizing, peer-topeer communication
 - Functionality/interoperability
- Demonstrated "all-in-one" AI connectivity.
- Internet connectivity.
- Integrated hardware/software components from many suppliers.
- Successfully implemented and tested the software based router for SATS AI.

Integrated Components
Mode SATS VHF Radio
EFR 300 Ground Station
VDL Mode Subnet Emulation using RF Attenuator
ADS-B Position Reporting System
FIS-B Graphical Weather Products
ATN CPDLC
Pilot/Aircraft Information Exchange
Netscape
E-mail Application
Web-enabled Remote Equipment Status Monitor
Aircraft Mobility Based on DNS
Peer to Peer tool
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Intel-based Workstations and Sun

Workstations (Ultra 10)

Configuration and integration work represents a "one of a kind" rapid prototype of the airborne internet.

Contacts

Accelerating CNS

Mulkerin Associates Inc. & Computer Networks & Software, Inc.

7405 Alban Station Ct. Suite B-201 Springfield, VA 22150-2318

MAI: Tom Mulkerin
703-644-5660
Tom.Mulkerin@Mulkerin.com
http://www.Mulkerin.com

CNS: Chris Dhas or Chris Wargo 703-644-2103 Chris.Dhas@CNSw.com, Chris.Wargo@CNSw.com http://www.CNSw.com